Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 981
Filtrar
1.
J Nat Prod ; 85(11): 2547-2556, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36268672

RESUMO

Eight new cyclopiazonic acid (1-8) and five new okaramine (9-13) alkaloids together with 13 known compounds were isolated from the fungus Chrysosporium undulatum YT-1. Compounds 2, 4, 5, 7, 10, 11, and 13 were chlorinated indole alkaloids. The structures of compounds 1-13 were elucidated by HRESIMS and NMR spectroscopic data. Their relative and absolute configurations were established by J-based configuration analysis, NOESY, NOEDIFF experiments, ECD spectroscopic data, and biogenetic considerations. Compound 4 inhibited the growth of Bacillus subtilis with an MIC value of 6.3 µg/mL. Compounds 9-11 exhibited strong insecticidal capacity against the third instar larvae of silkworm and cotton bollworm (LD50: ≤7.56 µg/g). At 40 µM, compound 1 showed obvious neuroprotection to the PC12 cells with 6-OHDA treatment.


Assuntos
Chrysosporium , Alcaloides Indólicos , Chrysosporium/química , Alcaloides Indólicos/química , Alcaloides Indólicos/isolamento & purificação , Alcaloides Indólicos/farmacologia , Estrutura Molecular , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Células PC12 , Animais , Ratos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/farmacologia
2.
Food Funct ; 13(6): 3247-3257, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35233585

RESUMO

Lycium ruthenicum Murr. fruit (LRF) is an edible berry known for its rich anthocyanin content. Our previous study has shown that LRF-derived anthocyanins have neuroprotective effects in rats, which may be due to their effective antioxidant activity. Therefore, this study performed online HPLC-DPPH screening as a bioactivity-guided method for the preparative separation of anthocyanins from LRF. Finally, the main fraction was isolated and identified as petunidin-3,5-O-diglucoside (Pn3G5G). Pn3G5G exhibited strong antioxidant capacity during DPPH and ABTS free radical scavenge assays. Furthermore, Pn3G5G exhibited protective effects on Nε-carboxymethyllysine (CML)-treated Neuro-2a cells by enhancing cell viability in a dose-dependent manner. CML-induced apoptosis was also reduced by Pn3G5G potentially by suppressing oxidative stress and inflammation. More importantly, Pn3G5G significantly improved cognitive impairment, neuroinflammation and neuronal apoptosis in D-galactose-induced aging mice. The result suggests the development of Pn3G5G as a healthcare product or a potent dietary supplement with antioxidant and neuroprotective effects.


Assuntos
Antocianinas , Antioxidantes , Lycium , Neurônios , Fármacos Neuroprotetores , Animais , Masculino , Camundongos , Envelhecimento , Antocianinas/química , Antocianinas/isolamento & purificação , Antocianinas/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Antioxidantes/fisiologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Disfunção Cognitiva , Frutas/química , Galactose/farmacologia , Lycium/química , Memória/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/farmacologia , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos
3.
Bioorg Med Chem Lett ; 61: 128613, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35176471

RESUMO

Aggregation of amyloid ß42 (Aß42) is one of the hallmarks of Alzheimer's disease (AD). Inhibition of Aß42 aggregation is thus a promising approach for AD therapy. Kampo medicine has been widely used to combat dementias such as AD. Crude drug known as Shoyaku is an ingredient of Kampo that could have potential as a natural source of novel drugs. However, given that a mixture of compounds, rather than singular compounds, could contribute to the biological functions of crude drug, there are very limited studies on the structure and mechanism of each constituent in crude drug which may have anti-Aß42 aggregation properties. Herein we provide an efficient method, using LC-MS combined with principal component analysis (PCA), to search for activity-dependent compounds that inhibit Aß42 aggregation from 46 crude drug extracts originating from 18 plants. Only 5 extracts (Kakou, Kayou, Gusetsu, Rensu, and Renbou) from lotus demonstrated differentially inhibitory activities depending on the part of the plant from which they are derived (e.g. petiole, leaf, root node, stamen, and receptacle, respectively). To compare the anti-aggregative properties of compounds of active crude drug with those of inactive crude drug, these extracts were subjected to LC-MS measurement, followed by PCA. From 12 candidate compounds identified from the analysis, glucuronized and glucosidized quercetin, as well as 6 flavonoids (datiscetin, kaempferol, morin, robinetin, quercetin, and myricitrin), including catechol or flatness moiety suppressed Aß42 aggregation, whereas curcumol, a sesquiterpene, did not. In conclusion, this study offers a new activity-differential methodology to identify bioactive natural products in crude drugs that inhibit Aß42 aggregation and that could be applied to future AD therapies.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/antagonistas & inibidores , Medicamentos de Ervas Chinesas/farmacologia , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Análise de Componente Principal , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Cromatografia Líquida , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Humanos , Espectrometria de Massas , Medicina Kampo , Estrutura Molecular , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Plantas Medicinais/química , Agregados Proteicos/efeitos dos fármacos , Relação Estrutura-Atividade
4.
J Ethnopharmacol ; 288: 114938, 2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-34999144

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Silybum marianum is a traditional Chinese medicine that has been used for treating liver disease. Silybin consisting of silybin A and silybin B, is a member of Silybum marianum, and exerts a therapeutic effect on many diseases. However, the protective effect of silybin on cisplatin-induced neurotoxicity and the stereoisomer contributing to the effect remain unknown. AIM OF THE STUDY: The present study aimed to study the effect of silybin on cisplatin-induced neuronal injury, compare the difference of protective effect between silybin A and silybin B, and the potential mechanism. MATERIALS AND METHODS: High performance liquid chromatography (HPLC) was used to separate silybin A and silybin B. X-ray crystallographic analysis in combination with experimental and calculated ECD were performed to identify the structure of silybin A and silybin B. The toxicity of the silybin or cisplatin against murine hippocampal neuronal HT22 cells was determined through MTT assay. The cell cycle and cell apoptosis were measured by PI staining and Annexin V-FITC/PI staining, respectively, and then subjected to flow cytometry. Western blot analysis was conducted to quantify the expression of proteins related to apoptosis and DNA damage. Immunofluorescence was used to evaluate the expression of DNA damage marker. In vivo experiment, the behavioral analysis was determined through pole test, swimming test and Morris water maze test. The index of superoxide dismutase (SOD), reduced glutathione (GSH), total antioxidant capacity (T-AOC) and lipid peroxidation (LPO) were examined to evaluate the antioxidant capacity in mice brain. Nissl staining and Tunel assay were used to detect the neuronal viability and apoptosis in hippocampus. RESULTS: We successfully separated and identified silybin A and silybin B. We found both silybin A and silybin B alleviated cisplatin-induced apoptosis and cell cycle arrest in HT22 cells, and silybin B was more effective. We chose silybin B for further mechanism investigation, and found silybin B alleviated DNA damage by enhancing phosphorylation of ATR and decreasing expression of γ-H2AX. In the in vivo experiment, we observed that silybin B markedly improved the behavioral abnormalities in cisplatin-treated mice, reduced LPO level while increased SOD, GSH and T-AOC in mice brain tissue. Nissl staining and Tunel assay showed that silybin B alleviated cisplatin-induced hippocampal damage. CONCLUSIONS: These results suggest that silybin B might serve as a promising drug candidate in mitigating cisplatin-induced neural injury in the brain and thereby improving the chemotherapeutic outcomes.


Assuntos
Cisplatino/toxicidade , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/prevenção & controle , Silibina/farmacologia , Animais , Antineoplásicos/toxicidade , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Dano ao DNA/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Síndromes Neurotóxicas/etiologia , Silibina/química , Silibina/isolamento & purificação
5.
J Ethnopharmacol ; 289: 115021, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35091012

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Rehmannioside A is derived from Rehmannia glutinosa Libosch, which is widely used as an important ingredient in diverse traditional Chinese medicines to treat diseases caused by "kidney deficiency" such as cerebral arteriosclerosis, aging-related stroke and dementia in China. Recent studies have proved that Rehmannia glutinosa Libosch and Rehmannioside A can improve memory capability and recover nerve damage. AIM OF THE STUDY: To investigate the effect of Rehmannioside A on cognitive impairment after ischemia in rats and SH-SY5Y cells, and further evaluate the anti-oxidative and anti-ferroptosis mechanisms. MATERIALS AND METHODS: Differentially expressed proteins (DEPs) in patients after cerebral ischemic stroke were revealed by a RayBio protein array. Cognitive impairment model was established by middle cerebral artery occlusion and reperfusion (MCAO) 14 days in rats. Rehmannioside A was administered intraperitoneally injection at dose of 80 mg/kg. The SH-SY5Y cells were exposed to H2O2 for 24 h and treated with Rehmannioside A (80 µM) for 24 h. The neuroprotecion of Rehmannioside A were evaluated by infarct volume (TTC), neurological defects (Garcia score) and learning memory (Morris water maze test) in vivo, and cell viability (CCK-8 or LDH) in vitro. Superoxide dismutase (SOD), malondialdehyde (MDA) and myeloperoxidase (MPO) activity of rats, glutathione (GSH), oxidized glutathione (GSSG) and nicotinamide adenine dinucleotide phosphate (NADPH) of cells were detected by biochemical assay. Intracellular reactive oxygen species (ROS) were measured by DCFH-DA assay. Myeloperoxidase (MPO), PI3 kinase (PI3K), p-PI3K, Akt, p-Akt, heme oxygenase-1 (HO-1), nuclear factor-E2-related factor 2 (Nrf2), SLC7A11, glutathione peroxidase 4 (GPX4) of the cerebral cortex in rats or SH-SY5Y cells were examined by western blotting. RESULTS: Compared with model group, the cognitive impairment and neurological deficits of Rehmannioside A group were significantly improved, and the cerebral infarction was reduced in MCAO rats. Moreover, the cell viability obviously increased and the H2O2-induced toxicity was reduced in Rehmannioside A group. Further research indicated that the expression of p-PI3K, p-Akt, nuclear Nrf2, HO-1 and SLC7A11 in Rehmannioside A group was significantly higher than model group. CONCLUSION: Rehmannioside A has neuroprotection effect and improves cognitive impairment after cerebral ischemia by inhibiting ferroptosis and activating PI3K/AKT/Nrf2 and SLC7A11/GPX4 signaling pathway. These findings provide valuable insight into the pathogenesis and therapeutic target of ischemic stroke.


Assuntos
Isquemia Encefálica , Disfunção Cognitiva , Medicamentos de Ervas Chinesas , Fármacos Neuroprotetores , Rehmannia , Animais , Humanos , Masculino , Ratos , Isquemia Encefálica/tratamento farmacológico , Estudos de Casos e Controles , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Ferroptose/efeitos dos fármacos , Infarto da Artéria Cerebral Média , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Rehmannia/química , Transdução de Sinais/efeitos dos fármacos , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia
6.
Pharm Biol ; 60(1): 212-224, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35076339

RESUMO

CONTEXT: Fruits of Forsythia suspensa Vahl (Oleaceae) and seeds of Cassia obtusifolia Linne (Caesalpinaceae) have been used to treat inflammation in Asia. OBJECTIVE: We examined the alleviation of memory function in Alzheimer's disease (AD) rats fed Forsythiae Fructus (FF) and Cassiae Semen water extracts (CS) and investigated the mechanisms responsible for the effects. MATERIALS AND METHODS: Thirty Sprague-Dawley male rats had hippocampal infusions of amyloid-ß(25-35) (AD rats; memory deficit), and ten rats were infused with amyloid-ß(35-25) (non-AD rats; no memory deficit). For eight weeks, all rats freely consumed high-fat diets (43% lard) incorporated with 200 mg/kg body weight assigned aqueous herbal extracts: AD-FF, AD-CS, or without extracts AD-CON (control), non-AD (normal-control). RESULTS: Memory impairment was prevented in the AD-FF (0.54 ± 0.06-fold) and the AD-CS rats (0.33 ± 0.04-fold) compared to the AD-CON by inhibiting amyloid-ß deposition to the levels less than one-fourth of the AD-CON group. The hippocampal pAkt→pGSK-3ß→pFOXO1 pathway was attenuated by approximately 3.25-fold in the AD-CON, while AD-FF prevented the attenuation better than AD-CS. The relative intensity of hippocampal tau protein based on ß-actin was suppressed with AD-FF (0.68 ± 0.09) and AD-CS (0.96 ± 0.81), compared to AD-CON (1.19 ± 0.13). AD decreased the abundance of Bacteroidales by 34.2% and Lactobacillales by 23.8% and increased Clostridiales by 181% while the AD-FF, but not the AD-CS, normalised the gut microbiota changes to be similar to the non-AD. DISCUSSION AND CONCLUSIONS: FF improved memory deficits better than CS in an AD-induced rat model. The potential neuroprotective benefits of FF against AD may be applicable to human AD therapy with additional clinical research.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Cassia/química , Forsythia/química , Extratos Vegetais/farmacologia , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Frutas , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Transtornos da Memória/tratamento farmacológico , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-Dawley , Sementes
7.
Biomed Pharmacother ; 145: 112415, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34775236

RESUMO

Oxidative stress is considered the main cause of cellular damage in a number of neurodegenerative disorders. One suitable ways to prevent cell damage is the use of the exogenous antioxidant capacity of natural products, such as microalgae. In the present study, four microalgae extracts, isolated from the Persian Gulf, were screened to analyze their potential antioxidant activity and free radical scavenging using ABTS, DPPH, and FRAP methods. The methanolic extracts (D1M) of green microalgae derived from Chlorella sp. exhibited potent free radical scavenging activity. In order to characterize microalgae species, microscopic observations and analysis of the expression of 18S rRNA were performed. The antioxidant and neuroprotective effects of D1M on H2O2-induced toxicity in PC12 cells were investigated. The results demonstrated that D1M significantly decreased the release of nitric oxide (NO), formation of intracellular reactive oxygen species (ROS), and the level of malondialdehyde (MDA), whereas it enhanced the content of glutathione (GSH), and activity of heme oxygenase 1 (HO-1), NAD(P)H: quinone oxidoreductase 1 (NQO1), and catalase (CAT) in PC12 cells exposed to H2O2. The pretreatment of D1M improved cell viability as measured by the MTT assay and invert microscopy, reduced cell apoptosis as examined by flow cytometry analysis, increased mitochondrial membrane potential (MMP), and diminished caspase-3 activity. The GC/MS analysis revealed that D1M ingredients have powerful antioxidant and anti-inflammatory compounds, such as butylated hydroxytoluene (BHT), 2,4-di-tert-butyl-phenol (2,4-DTBP), and phytol. These results suggested that Chlorella sp. extracts have strong potential to be applied as neuroprotective agents, for the treatment of neurodegenerative disorders.


Assuntos
Antioxidantes/farmacologia , Chlorella/química , Doenças Neurodegenerativas/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Animais , Antioxidantes/isolamento & purificação , Apoptose/efeitos dos fármacos , Hidroxitolueno Butilado/isolamento & purificação , Hidroxitolueno Butilado/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sequestradores de Radicais Livres/isolamento & purificação , Sequestradores de Radicais Livres/farmacologia , Peróxido de Hidrogênio/toxicidade , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Doenças Neurodegenerativas/fisiopatologia , Fármacos Neuroprotetores/isolamento & purificação , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Fenóis/isolamento & purificação , Fenóis/farmacologia , Fitol/isolamento & purificação , Fitol/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo
8.
Chem Biodivers ; 19(1): e202100868, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34837325

RESUMO

Two new seco-prezizaane-type sesquiterpenes, 2ß-hydroxy-6-deoxyneoanisatin (1) and 3,4-anhydro-2-oxo-1α-hydroxy-6-deoxyneoanisatin (2), and two new prenylated C6 -C3 compounds, illilanceofunones A (3) and B (4), were obtained from the fruits of Illicium lanceolatum, along with four known prenylated C6 -C3 compounds (5-8). Their structures were proposed through HR-ESI-MS, 1 H, 13 C, and 2D NMR data interpretation. Moreover, the absolute configuration of 1 and 2 were further assigned by single-crystal X-ray diffraction analysis and electronic circular dichroism (ECD) calculations, respectively. Illihenryipyranol A (6) exhibited neuroprotective activity against MPP+ -induced PC12 cell damage in a dose-dependent manner.


Assuntos
Illicium/química , Fármacos Neuroprotetores/química , Sesquiterpenos/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Dicroísmo Circular , Frutas/química , Frutas/metabolismo , Illicium/metabolismo , Espectroscopia de Ressonância Magnética , Conformação Molecular , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/farmacologia , Células PC12 , Extratos Vegetais/química , Prenilação , Ratos , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/farmacologia , Espectrometria de Massas por Ionização por Electrospray
9.
J Antibiot (Tokyo) ; 75(1): 40-43, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34824375

RESUMO

A neuroprotective compound (2) was isolated from the culture broth of the dutomycin (1) producer Streptomyces sp. RAP78. The molecular formula of 2 was established as C44H55NO16 by high-resolution FAB-MS. The structure was determined to be a new dutomycin derivative possessing an acetimidoyl group in place of an acetyl group by NMR spectroscopic analysis. 13-Deoxo-13-iminodutomycin (2) but not dutomycin (1) protected C6 rat glioma cells and N18-RE-105 rat primary retina-mouse neuroblastoma hybrid cells from glutamate-induced toxicity with EC50s of 0.12 µM and 0.72 µM, respectively.


Assuntos
Fármacos Neuroprotetores/farmacologia , Streptomyces/química , Animais , Antraciclinas , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Descoberta de Drogas , Ácido Glutâmico/toxicidade , Espectroscopia de Ressonância Magnética , Camundongos , Estrutura Molecular , Fármacos Neuroprotetores/isolamento & purificação , Ratos , Espectrometria de Massas de Bombardeamento Rápido de Átomos
10.
J Ethnopharmacol ; 283: 114715, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34648898

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The use of Panax ginseng C.A.Mey. in traditional Chinese medicine dates back to about 5000 years ago thanks to its several beneficial and healing properties. Panaxadiol is a triterpenoid sapogenin monomer found in the roots of Panax ginseng C.A.Mey. and has been proven to have various bio-activities such as anti-inflammatory, anti-tumour and neuroprotective effects. AIM OF THE STUDY: The present study focuses on investigating the inflammation inhibitory effect and mechanism of panaxadiol by regulating zinc finger protein 91-regulated activation of non-canonical caspase-8 inflammasome and MAPKs in macrophages. MATERIALS AND METHODS: In vitro, the underlying mechanisms by which panaxadiol inhibits ZFP91-regulated IL-1ß expression were investigated using molecular docking, western blotting, RT-PCR, ELISA, immunofluorescence, and immunoprecipitation assays. In vivo, colitis was induced by oral administration of DSS in drinking water, and peritonitis was induced by an intraperitoneal injection of alum. Recombinant adeno-associated virus (AAV serotype 9) vector was used to establish ZFP91 knockdown mouse. RESULTS: We confirmed that panaxadiol inhibited IL-1ß secretion by suppressing ZFP91 in macrophages. Further analysis revealed that panaxadiol inhibited IL-1ß secretion by suppressing ZFP91-regulated activation of non-canonical caspase-8 inflammasome. Meanwhile, panaxadiol inhibited IL-1ß secretion by suppressing ZFP91-regulated activation of MAPKs. In vivo, prominent anti-inflammatory effects of panaxadiol were demonstrated in a DSS induced acute colitis mouse model and in an alum-induced peritonitis model by suppressing ZFP91-regulated secretion of inflammatory mediators, consistent with the results of the AAV-ZFP91 knockdown in mice. CONCLUSIONS: We report for the first time that panaxadiol inhibited IL-1ß secretion by suppressing ZFP91-regulated activation of non-canonical caspase-8 inflammasome and MAPKs, providing evidence for anti-inflammation mechanism of panaxadiol treatment for inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Ginsenosídeos/farmacologia , Fármacos Neuroprotetores/farmacologia , Panax/química , Animais , Anti-Inflamatórios/isolamento & purificação , Caspase 8/metabolismo , Colite/tratamento farmacológico , Técnicas de Silenciamento de Genes , Ginsenosídeos/isolamento & purificação , Células HEK293 , Humanos , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Interleucina-1beta/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/isolamento & purificação , Células THP-1 , Ubiquitina-Proteína Ligases/genética
11.
Molecules ; 26(21)2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34770830

RESUMO

Cinnamon procyanidin oligomers (CPOs) are water-soluble components extracted from cinnamon. This study aims to explore the neuroprotection of B-type CPO (CPO-B) against 1-methyl-4-phenylpyridinium (MPP+)-mediated cytotoxicity and the molecular mechanisms underlying its protection. The results demonstrated that CPO-B showed protection by increasing cell viability, attenuating an intracellular level of reactive oxygen species, downregulating cleaved caspase-3 expression, and upregulating the Bcl-2/Bax ratio. Moreover, CPO-B completely blocked the dephosphorylation of extracellular, signal-regulated kinase 1 and 2 (Erk1/2) caused by MPP+. Treatment with an Erk1/2 inhibitor, SCH772984, significantly abolished the neuroprotection of CPO-B against MPP+. Taken together, we demonstrate that CPO-B from cinnamon bark provided protection against MPP+ in cultured SH-SY5Y cells, and the potential mechanisms may be attributed to its ability to modulate the dysregulation between pro-apoptotic and anti-apoptotic proteins through the Erk1/2 signaling pathway. Our findings suggest that the addition of cinnamon to food or supplements might benefit patients with PD.


Assuntos
Apoptose/efeitos dos fármacos , Biflavonoides/farmacologia , Catequina/farmacologia , Cinnamomum zeylanicum/química , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Proantocianidinas/farmacologia , 1-Metil-4-fenilpiridínio , Biflavonoides/química , Biflavonoides/isolamento & purificação , Catequina/química , Catequina/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Doença de Parkinson/patologia , Proantocianidinas/química , Proantocianidinas/isolamento & purificação , Células Tumorais Cultivadas
12.
Molecules ; 26(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34684793

RESUMO

Vitis vinifera (grape) contains various compounds with acknowledged phytochemical and pharmacological properties. Among the different parts of the plant, pomace is of particular interest as a winemaking industry by-product. A characterization of the water extract from grape pomace from Montepulciano d'Abruzzo variety (Villamagna doc) was conducted, and the bioactive phenolic compounds were quantified through HPLC-DAD-MS analysis. HypoE22, a hypothalamic cell line, was challenged with an oxidative stimulus and exposed to different concentrations (1 µg/mL-1 mg/mL) of the pomace extract for 24, 48, and 72 h. In the same conditions, cells were exposed to the sole catechin, in a concentration range (5-500 ng/mL) consistent with the catechin level in the extract. Cell proliferation was investigated by MTT assay, dopamine release through HPLC-EC method, PGE2 amount by an ELISA kit, and expressions of neurotrophin brain-derived neurotrophic factor (BDNF) and of cyclooxygenase-2 (COX-2) by RT-PCR. The extract reverted the cytotoxicity exerted by the oxidative stimulus at all the experimental times in a dose-dependent manner, whereas the catechin was able to revert the oxidative stress-induced depletion of dopamine 48 h and 72 h after the stimulus. The extract and the catechin were also effective in preventing the downregulation of BDNF and the concomitant upregulation of COX-2 gene expression. In accordance, PGE2 release was augmented by the oxidative stress conditions and reverted by the administration of the water extract from grace pomace and catechin, which were equally effective. These results suggest that the neuroprotection induced by the extract could be ascribed, albeit partially, to its catechin content.


Assuntos
Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/farmacologia , Fenóis/farmacologia , Vitis/química , Animais , Artemia/efeitos dos fármacos , Linhagem Celular , Daphnia/efeitos dos fármacos , Humanos , Hipotálamo/citologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Neuroproteção/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fenóis/química , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos
13.
Bioorg Chem ; 116: 105389, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34601295

RESUMO

Dried flowers of Inula britannica commercially serve as pharmaceutical/nutraceutical herbs in the manufacture of medicinal products and functional tea that has been reported to possess extensive biological property. However, the neuroprotective constituents in I. britannica flowers are not known. In the current study, phytochemicals of sesquiterpenoid-enriched I. britannica flowers extract and their potential multifunctional neuroprotective effects were investigated. Nineteen structurally diverse sesquiterpenoids, including two new sesquiterpenoid dimers, namely, inubritanolides A and B (1, 2), and four new sesquiterpenoid monomers (3-6), namely, 1-O-acetyl-6-O-chloracetylbritannilactone (3), 6-methoxybritannilactone (4), 1-hydroxy-10ß-methoxy-4αH-1,10-secoeudesma-5(6),11(13)-dien-12,8ß-olide (5) and 1-hydroxy-4αH-1,10-secoeudesma-5(6),10(14),11(13)-trien-12,8ß-olide (6), as well as 13 known congeners (7-19) were isolated from this source. The structures of compounds 1-6 were elucidated by 1D- and 2D- NMR and HR-ESI-MS data, and their absolute configurations were discerned by electronic circular dichroism (ECD) data analysis and single crystal X-ray diffraction. Interestingly, inubritannolide A (1) is a new type [4 + 2] Diels-Alder dimer featuring a hepta-membered cycloether skeleton. Most of the compounds showed potential multifunctional neuroprotective effects, including antioxidative, anti-neuroinflammatory, and microglial polarization properties. Specifically, 1 and 6 displayed slight strong neuroprotective potency against different types of neuronal cells mediated by various inducers including H2O2, 6-hydroxydopamine (6-OHDA), and lipopolysaccharide (LPS). Overall, this is the first report on multifunctional neuroprotective effects of sesquiterpenoid-enriched I. britannica flowers extract, which supports its potential pharmaceutical/nutraceutical application in neurodegenerative diseases.


Assuntos
Antioxidantes/farmacologia , Flores/química , Inula/química , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Sesquiterpenos/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Relação Dose-Resposta a Droga , Humanos , Inflamação/tratamento farmacológico , Estrutura Molecular , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Relação Estrutura-Atividade
14.
Int J Mol Sci ; 22(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34681788

RESUMO

Human neurons rapidly die after ischemia and current therapies for stroke management are limited to restoration of blood flow to prevent further brain damage. Thrombolytics and mechanical thrombectomy are the available reperfusion treatments, but most of the patients remain untreated. Neuroprotective therapies focused on treating the pathogenic cascade of the disease have widely failed. However, many animal species demonstrate that neurons can survive the lack of oxygen for extended periods of time. Here, we reviewed the physiological and molecular pathways inherent to tolerant species that have been described to contribute to hypoxia tolerance. Among them, Foxo3 and Eif5A were reported to mediate anoxic survival in Drosophila and Caenorhabditis elegans, respectively, and those results were confirmed in experimental models of stroke. In humans however, the multiple mechanisms involved in brain cell death after a stroke causes translation difficulties to arise making necessary a timely and coordinated control of the pathological changes. We propose here that, if we were able to plagiarize such natural hypoxia tolerance through drugs combined in a pharmacological cocktail it would open new therapeutic opportunities for stroke and likely, for other hypoxic conditions.


Assuntos
Hipóxia/patologia , Neuroproteção/fisiologia , Acidente Vascular Cerebral/terapia , Animais , Lesões Encefálicas/patologia , Lesões Encefálicas/terapia , Caenorhabditis elegans , Drosophila , Humanos , Hipóxia/terapia , Modelos Biológicos , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/tendências , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Especificidade da Espécie , Acidente Vascular Cerebral/patologia
15.
Biomed Pharmacother ; 143: 112175, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34649336

RESUMO

Withania somnifera (L.) Dunal (Solanaceae) has been used as a traditional Rasayana herb for a long time. Traditional uses of this plant indicate its ameliorative properties against a plethora of human medical conditions, viz. hypertension, stress, diabetes, asthma, cancer etc. This review presents a comprehensive summary of the geographical distribution, traditional use, phytochemistry, and pharmacological activities of W. somnifera and its active constituents. In addition, it presents a detailed account of its presence as an active constituent in many commercial preparations with curative properties and health benefits. Clinical studies and toxicological considerations of its extracts and constituents are also elucidated. Comparative analysis of relevant in-vitro, in-vivo, and clinical investigations indicated potent bioactivity of W. somnifera extracts and phytochemicals as anti-cancer, anti-inflammatory, apoptotic, immunomodulatory, antimicrobial, anti-diabetic, hepatoprotective, hypoglycaemic, hypolipidemic, cardio-protective and spermatogenic agents. W. somnifera was found to be especially active against many neurological and psychological conditions like Parkinson's disease, Alzheimer's disease, Huntington's disease, ischemic stroke, sleep deprivation, amyotrophic lateral sclerosis, attention deficit hyperactivity disorder, bipolar disorder, anxiety, depression, schizophrenia and obsessive-compulsive disorder. The probable mechanism of action that imparts the pharmacological potential has also been explored. However, in-depth studies are needed on the clinical use of W. somnifera against human diseases. Besides, detailed toxicological analysis is also to be performed for its safe and efficacious use in preclinical and clinical studies and as a health-promoting herb.


Assuntos
Etnofarmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Withania , Animais , Antivirais/isolamento & purificação , Antivirais/farmacologia , COVID-19/virologia , Humanos , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/toxicidade , Segurança do Paciente , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/toxicidade , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade , Raízes de Plantas , Psicotrópicos/isolamento & purificação , Psicotrópicos/farmacologia , Psicotrópicos/toxicidade , Medição de Risco , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Withania/química , Tratamento Farmacológico da COVID-19
16.
Chem Biodivers ; 18(12): e2100436, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34664781

RESUMO

Three undescribed hydroxycinnamic acid amide dimers 1-3 were isolated and identified from an extract of Goji berry. Their molecular structures were elucidated based on NMR, MS, and IR spectra analysis. Compounds 1-3 were hydroxycinnamic acid amide dimers, which possess a cyclic butane moiety formed by head-to-head connection. These compounds at 25 µM showed the disaggregation potency on the copper-mediated Aß1-42 aggregation ranging from 27.3±3.2 to 31.0±2.9 %. This study provides new information on the antiaging traditional usage of goji berry.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Amidas/farmacologia , Ácidos Cumáricos/farmacologia , Lycium/química , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Doença de Alzheimer/metabolismo , Amidas/química , Amidas/isolamento & purificação , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Ácidos Cumáricos/química , Ácidos Cumáricos/isolamento & purificação , Relação Dose-Resposta a Droga , Humanos , Conformação Molecular , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/metabolismo , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Agregados Proteicos/efeitos dos fármacos
17.
Biomed Pharmacother ; 143: 112157, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34517282

RESUMO

The development of nanomedicines to modulate the mitochondrial function is a great scientific challenge since mitochondrial dysfunction is a pathological hallmark of many chronic diseases, including degenerative brain pathologies like Parkinson's and Alzheimer's diseases. To address this challenge, the mitochondriotropic features of the elderberry anthocyanin-enriched extract (Sambucus nigra) were combined with the self-assembling properties of the membrane polar lipids from Codium tomentosum in an innovative SC-Nanophytosomes formulation. Membrane polar lipids, obtained by a new procedure as chlorophyll-free extract, are characterized by 26% of non-phosphorus polar lipids and 74% of phospholipids (dominated by anionic lipids) containing a high degree of polyunsaturated fatty acids. The anthocyanin-enriched extract is dominated by a mixture of four cyanidin-glycosides, representing about 86% of their phenolic content. SC-Nanophytosomes engineered with 600 µM algae membrane polar lipids and 0.5 mg/L of the anthocyanin-enriched extract are nanosized vesicles (diameter =108.74 ± 24.74 nm) with a negative surface charge (Zeta potential = -46.93 ± 6.63 mV) that exhibit stability during storage at 4 ºC. In vitro assays with SH-SY5Y cells showed that SC-Nanophytosomes have the competence to target mitochondria, improving the mitochondrial respiratory chain complexes I and II and preserving the mitochondrial membrane potential in the presence of rotenone. Additionally, SC-Nanophytosomes protect SH-SY5Y cells against the toxicity induced by rotenone or glutamate. Green-fluorescent labeled SC-Nanophytosomes were used to reveal that they are mainly internalized by cells via caveola-mediated endocytosis, escape from endosome and reach the cytoplasm organelles, including mitochondria. Overall, data indicate that SC-Nanophytosomes have the potential to support a mitochondria-targeted therapy for neurodegenerative diseases.


Assuntos
Antocianinas/farmacologia , Clorófitas , Portadores de Fármacos , Lipídeos/química , Mitocôndrias/efeitos dos fármacos , Nanopartículas , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Sambucus , Antocianinas/química , Antocianinas/isolamento & purificação , Linhagem Celular Tumoral , Clorófitas/química , Composição de Medicamentos , Complexo I de Transporte de Elétrons/metabolismo , Endocitose , Frutas , Ácido Glutâmico/toxicidade , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Nanotecnologia , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Rotenona/toxicidade , Sambucus/química , Propriedades de Superfície
18.
Molecules ; 26(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34500769

RESUMO

Ergosta-7,9(11),22-trien-3ß-ol (EK100) was isolated from the Taiwan-specific medicinal fungus Antrodia camphorata, which is known for its health-promotion and anti-aging effects in folk medicine. Alzheimer's disease (AD) is a major aging-associated disease. We investigated the efficacy and potential mechanism of ergosta-7,9(11),22-trien-3ß-ol for AD symptoms. Drosophila with the pan-neuronal overexpression of human amyloid-ß (Aß) was used as the AD model. We compared the life span, motor function, learning, memory, oxidative stress, and biomarkers of microglia activation and inflammation of the ergosta-7,9(11),22-trien-3ß-ol-treated group to those of the untreated control. Ergosta-7,9(11),22-trien-3ß-ol treatment effectively improved the life span, motor function, learning, and memory of the AD model compared to the untreated control. Biomarkers of microglia activation and inflammation were reduced, while the ubiquitous lipid peroxidation, catalase activity, and superoxide dismutase activity remained unchanged. In conclusion, ergosta-7,9(11),22-trien-3ß-ol rescues AD deficits by modulating microglia activation but not oxidative stress.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Drosophila , Humanos , Microglia/metabolismo , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Polyporales/química
19.
Naunyn Schmiedebergs Arch Pharmacol ; 394(12): 2389-2399, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34554266

RESUMO

Senecio graciliflorus DC root extract was studied for secondary metabolite composition following the bioactivity-guided isolation technique. The ethyl acetate extract of Senecio graciliflorus root yielded nine chemical constituents: 3,4-di-tert-butyl toluene, stigmasterol, ß-sitosterol, 2ß-(angeloyloxy)furanoeremophilane, gallic acid, 2ß-{[(Z)-2-hydroxymethylbut-2-enoyl]oxy}furanoeremophilane, 1-hydroxypentan-2-yl-4-methylbenzoate, sarcinic acid, and sitosterol 3-O-ß-D-glucopyranoside. The structures of the chemical constituents were elucidated on the basis of spectral data analysis in the light of literature. All the compounds are being reported for the first time from this plant. The isolated constituents were screened for neuroprotective effects against corticosterone-induced impairment in neuroblastoma cell lines (SH-SY5S cells). The viability of SH-SY5S cells was determined using MTT assay. Among various isolated compounds, three natural products (sarcinic acid, gallic acid, and ß-sitosterol) displayed robust neurotropic activity. The compounds increased neuronal cell survival in differentiated neuroblastoma cells (SH-SY5Y) from high-dose corticosterone (400 µM)-induced cell death. All the three constituents showed maximum AKT/ERK pathway activation at 20 µM concentration. The studies are aimed to explore small molecules for treating neurodegeneration underlying various neurological disorders to restore neuronal cell plasticity.


Assuntos
Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Senécio/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Corticosterona , Humanos , Neuroblastoma/patologia , Fármacos Neuroprotetores/isolamento & purificação , Raízes de Plantas , Metabolismo Secundário , Senécio/metabolismo
20.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360755

RESUMO

Increasing attention is being focused on the use of polypeptide-based N-methyl-d-aspartate (NMDA) receptor antagonists for the treatment of nervous system disorders. In our study on Achyranthes bidentata Blume, we identified an NMDA receptor subtype 2B (NR2B) antagonist that exerts distinct neuroprotective actions. This antagonist is a 33 amino acid peptide, named bidentatide, which contains three disulfide bridges that form a cysteine knot motif. We determined the neuroactive potential of bidentatide by evaluating its in vitro effects against NMDA-mediated excitotoxicity. The results showed that pretreating primary cultured hippocampal neurons with bidentatide prevented NMDA-induced cell death and apoptosis via multiple mechanisms that involved intracellular Ca2+ inhibition, NMDA current inhibition, and apoptosis-related protein expression regulation. These mechanisms were all dependent on bidentatide-induced inhibitory regulation of NR2B-containing NMDA receptors; thus, bidentatide may contribute to the development of neuroprotective agents that would likely possess the high selectivity and safety profiles inherent in peptide drugs.


Assuntos
Achyranthes/química , Hipocampo/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores , Peptídeos , Proteínas de Plantas , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/farmacologia , Peptídeos/química , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...